ELSEVIER

Operations Research Letters 23 (1998) 81-88

operations
research
letters

A two-phase algorithm for solving a class of hard satisfiability
problems !

Joost P. Warners®®*, Hans van Maaren®

ASEN2, CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
®Department of Technical Mathematics and Informatics, Faculty of Information Technology and Systems, Delft University of
Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

Received 1 April 1998; received in revised form 1 September 1998

Abstract

The DIMACS suite of satisflability (SAT) benchmarks contains a set of instances that are very hard for existing algorithms.
These instances arise from learning the parity function on 32bits. In this paper we develop a two-phase algorithm that is
capable of solving these instances. In the first phase, a polynomially solvable subproblem is identified and solved. Using
the solution to this problem, we can considerably restrict the size of the search space in the second phase of the algorithm,
which is an extension of the well-known Davis-Putnam-Logemann—Loveland algorithm. We conclude with reporting on our
computational results on the parity instances. ©) 1998 Elsevier Science B.V. All rights reserved.

Keywords: Satisfiability; Polynomial algorithm; Davis-Putnam algorithm

1. Introduction

In a recent paper by Selman et al. [9] 10 chal-
lenges in propositional reasoning are formulated. One
of these is to develop an efficient algorithm for solv-
ing instances arising from the parity learning problem
on 32bits [3]. Several instances of this problem are
available in the DIMACS suite of SAT benchmarks
[10]. None of the currently known algorithms appear
to be capable of solving these instances in reasonable
time. Incomplete algorithms do not succeed in find-

* Corresponding author. E-mail: j.p.wamners@twi.tudelft.nl.
! Supported by the Dutch Organization for Scientific Research
(NWO) under grant SION 612-33-001.

ing models, while it seems that for systematic search
procedures the search space is too large [9].

We develop a two-phase algorithm for the parity
problems that is capable of finding models in less
than five minutes. In the first phase of the algorithm
a polynomially solvable subproblem is isolated and
solved. The subproblem can be identified using linear
programming; it has a balanced polynomial represen-
tation [11], and can be shown to be equivalent to a
formula that is a conjunction of (nested) equivalen-
cies (CoE). Such formulas are also known as XOR~
SAT formulas, which were shown to be polynomi-
ally solvable by Schaefer [8]. First solving the CoE
subformula allows us to reduce the search—space in
the second phase considerably. In that phase we ap-
ply a DPLL-type algorithm [4] to a conjunction of a

0167-6377/98/$ —see front matter © 1998 Elsevier Science B.V. All rights reserved.

PII: S0167-6377(98)00052-2

82 J.P. Warners, H. van Maaren| Operations Research Letters 23 (1998) 81-88

formula in conjunctive normal form (CNF) and a CoE
formula.

This paper is organized as follows. In Section 2 we
discuss the necessary preliminaries. Subsequently, we
introduce the concept of balanced polynomial repre-
sentations (BPR) and show that a formula with BPR
is equivalent to a CoE formula. We briefly review a
polynomial-time algorithm for CoE formulas. Section
4 is concerned with the recognition of CoE subformu-
las, and in Section 5 we extend the DPLL algorithm
to solve conjunctions of CNF and CoE formulas. We
conclude with computational results.

2. Preliminaries and notation

A propositional formula @ in conjunctive normal
form (CNF) is the conjunction of n clauses, where
each clause is a disjunction of literals () p;. Each
literal is an atomic proposition (or variable) or its
negation (7). Let m be the number of atomic propo-
sitions. Thus each clause C; is of the form

Ck=\/p,~v\/‘—|p_,~

i€l JE

with Iy, Jy C{1,...,m} disjoint. The satisfiability
problem of propositional logic is to assign truth val-
ues to the variables, such that each clause evaluates
to true (i.e. one of its literals is true) and so the whole
formula evaluates to true, or it must be proved that
no such assignment exists.

We define the matrix 4 € R"*" to be the clause—
variable matrix. Each row corresponds to a clause and
each column is associated with a variable. It holds that
ap=11ifi € Iy, ay=—1ifi € J;, while a;; =0 for any
i & Iy UJi. Note that, associating a {—1, 1} variable
x; with each proposition letter p;, the integer linear
programming formulation of the satisfiability problem
can be stated as finding a vector x € {—1,1}" such
that 4x > b, where b € R”, with by, =2 — | UJi/|.

Now, let us derive a different formulation of SAT
problems, based on a multiplicative rather than ad-
ditive representation of clauses. Formulations of this
type have been used by Gu [6] to obtain effective
approximation algorithms for large-scale satisfiability
problems. In the following section we need this type of
formulation to characterize a particular class of poly-
nomially solvable formulas.

A clause C; is satisfied, if and only if x € {-1,1}"
satisfies

P =J[0—x) [T +x))

i€ly jedy
=] - awx)=o. (1)
i=1

Observe that Py(x) remains a valid representation of
clause C; when multiplying it with a (strictly) posi-
tive weight wy. Let M = {1,...,m}. In general, x €
{=1,1}" is a satisfiable assignment of a formula @,
if and only if

P(x) = Z wiPr(x)
k=1

n

= iwk + Z(—l)'lI ZWk Hakixi =0,
k=1

1M k=1 iel

where in principal I runs through all possible subsets
of M (I # @) and w is a strictly positive weight vector.
Note that the number of subsets that has to be taken
into account can be restricted substantially, since in
fact only subsets / C M for which I C I, UJ; for some
k=1,...,n need to be considered. In general, for a
clause with length Z, 2’ — 1 coefficients need to be
computed.

We use the notation
n

o =D w [aws @)
k=1 i€l

where / CM = {1,...,m}. The satisfiability problem

has the following polynomial representation:

(PR) find x € {-1,1}"" such that

n
PE)=Y wi+ o [u=0.
k=1 ICM el
Observe that by construction £(x)=0 for any
x€{—1,1}". Strict inequality implies that the corre-
sponding CNF formula is unsatisfiable. Note that the
coefficients ¢; are functions of the weights wy; thus
(PR) changes when the weights are adjusted. In the
next sections it is shown that this allows us to look
for a set of weights such that a formula or subformula
can be concluded to be polynomially solvable or even
unsatisfiable.
In this paper we also make use of propositional for-
mulas in conjunction of equivalencies form (CoEs).

J.P. Warners, H. van Maaren |/ Operations Research Letters 23 (1998) 81-88 83

Such formulas are also known as XOR-SAT formu-
las, which were shown to be solvable in polynomial
time by Schaefer [8] (see also [11]), as opposed to for-
mulas in CNF which are in general NP-complete [2].
An XOR-SAT formula can be represented making use
of additive representations in Z,; however, the mul-
tiplicative representation allows us to recognize CoE
c.q. XOR-SAT formulas by their CNF representation
in a natural way. In the next section we briefly review
a polynomial-time algorithm for CoE formulas.

A CoE formula is a conjunction of equivalency
clauses. An equivalency clause Qy is defined as a
(nested) equivalency of literals or its negation. We
denote this as
O =["k *H" Pi» (3)

i€l
where the square brackets denote the optionality of
the negation operator. Observe that the polynomial
representation of @y is very short:

Q)= [=1, (4)

uIn

where J; =—1 if the negation operator is present in Eq.
(3), otherwise d; = 1. This representation is obtained
by directly considering Eq. (3); an equivalent repre-
sentation is obtained by first translating Q; to CNF,
and then summing the 2/4/=! associated polynomial
representations (1). Conversely, it is easy to see that
to any equation of type (4) an equivalency clause is
associated. For example, if O, ="1(p1 < ps < py),
then Q;(x) = —x;x4xg = | and vice versa. Note that
the CNF representation of @ is given by

(Tpr VTpaVTpg) A(pr Vo pa NV Tps)
ANpiV TIpaV ps) A(TIp1 V paV ops). (5)

The reader may want to verify that by taking the sum
of the polynomial representations of these clauses, in-
deed a representation equivalent to O (x) is obtained.

3. Balanced polynomial representations

In this section we discuss a notion of balancedness
for SAT formulas, based on the polynomial represen-
tation (PR). The notions discussed here were earlier
introduced in [11]. Let us start with a definition.

Definition 1. Consider the polynomial representation
(PR). We call the polynomial function #(x) balanced
if

n

Z | SZW"'

1CM k=1

Furthermore, 2(x) is called (strictly) positive if

Z \C‘[l < Zwk.

1M k=

Now assume we are given a SAT formula @ and its
polynomial representation (PR). If 2(x) is balanced,
we say that @ has a balanced polynomial representa-
tion (BPR). Similarly, if 2(x) is positive, we say that
& has a positive polynomial representation (PPR). In
the latter case @ is unsatisfiable [11].

We have the following lemma.

Lemma 1. If @ has a balanced polynomial represen-
tation, it is equivalent to a CoE formula.

Proof. Observe that if 2(x) is balanced, then for any
feasible vector x € {—1,1}" it must hold that

Cl Hxi = ~|C'1|,

i€l
for all / C M. This implies that we may set ¢; to

sgn(c;), thus obtaining an equation of the form
4). O

Let us now review a polynomial time algorithm for
solving CoE formulas, which (implicitly) yields all
satisfiable solutions. It may be noted that this algo-
rithm is equivalent to Gaussian elimination in Z; [8].
We only give the outline here, for a more detailed de-
scription the reader is referred to [11].

Consider an equivalency-clause @ and its polyno-
mial representation O (x) (4). Obviously, for any fea-
sible solution x € {—1, 1}" it holds that

xj=0 [[x foralljel.

i€LN]
Choosing an index j € /; we can substitute the above
expression in all equivalency-clauses Q; (/ # k) in
which x; occurs, using that x? = 1. Thus all but one
occurrence of x; are eliminated. Now the algorithm
runs as follows. We initialize the set .# = {x,...,xu},

84 J.P. Warners, H. van Maaren| Operations Research Letters 23 (1998) 81-88

the set of independent variables. We loop through
the equivalency clauses once, choosing a variable x;
in each one to eliminate from all other equivalency
clauses. Subsequently we remove x; from .#, and call
it a dependent variable. Thus we end up with a set
of equivalency clauses for which all satisfiable as-
signments can be constructed by assigning all possi-
ble combinations of truth values to the independent
variables. The values of the dependent variables are
uniquely determined by an assignment to the indepen-
dent variables. Note that during the elimination pro-
cess the equality —1 = 1 might be derived; obviously,
this implies that the formula under consideration is a
contradiction. Here is a small example.

Example. A balanced polynomial representation is
given by

P(x) =T — 2x1X2x3 + X1X3X5 — 3X2X4X5 — X X4Xs.

After executing the algorithm an equivalent represen-
tation is obtained:

3”*():) =4 + x1X5 + XoX5 + X4 — X3,

with .# = {xs}. Thus two distinct solutions can be
constructed.

If a formula has a CoE subformula, solving this
first may be of help in solving the full formula, since
it allows us to take dependencies into account in a
systematic way. When solving the full formula the
search can possibly be restricted to the independent
variables. Moreover, the CoE subformula might be a
contradiction, implying that the full formula is also
unsatisfiable.

4. Polynomial time recognition of CoE subformulas

Let us now address the problem of recognizing a
CoE subformula. We can make use of a linear pro-
gramming (LP) formulation to find a CoE subformula
of maximal weight. Since the construction of the LP
can be done in polynomial time (assuming that the
maximal clause length is bounded and fixed), and LP
problems are polynomially solvable [7], the recogni-
tion problem can be solved in polynomial time.

In the formulation the weights wy occurring in the
polynomial representation (PR) are the main decision

variables. Essentially, we want to find a set of non-
negative weights w; and a slack s>0 such that (see
Definition 1 and Eq. (2))

> (H%) Wi +s=k‘;wk- ©6)

ICM k=1 \i€l

We allow the weights to be equal to zero; if wy =0
for some k, this implies that clause & is not in the
subformula, while if w; > 0 clause £ is in the subfor-
mula. Our first goal should be to find a solution with s
strictly positive (since then the associated subformula
has PPR and is unsatisfiable); if no such solution ex-
ists, the goal is to identify a subformula of maximal
weight with BPR. To check whether solutions with the
desired properties exist, we first solve an LP with the
objective of maximizing s, and if the optimal value of
this LP is equal to zero, a second LP must be solved
with the objective to maximize the sum of the weights.
Consider the following LP.

n
max as+ﬁZwk

k=1

n
s.t. Z(z,*—i—z,‘)—Zwk +s5=0,
IcM k=1

(LP) T
Z (Hak,-> wp —zf +z; =0,1CM,

k=1 \iel

0w <1, 1<k<n,
zf, z7 20, ICM,
s=0.

The two separate LPs are obtained by setting f=0 and
a=0, s=0, respectively. The first constraint evaluates
expression (6) and in the subsequent set of constraints
the ¢; are computed (see Eq. (2)). The auxiliary vari-
ables z;” and z,” associated with the (nonempty) set
I are used to eliminate the absolute values in Eq. (6)
in the usual way. For a formula in which the clauses
have a maximum length /, the numbers of variables
and constraints are bounded by (2/*' — 1)n + 1 and
(2" = D)n+ 1, respectively.

Observe that if the optimal value of the first LP is
equal to zero, no subformula with PPR exists. If the
optimal value is positive, the subformula induced by
the positive weights in the optimal solution is unsatis-
fiable. Obviously, the existence of a subformula with
PPR is merely a sufficient condition for a formula to
be contradictory. If the optimal value of the second

J.P. Warners, H. van Maaren | Operations Research Letters 23 (1998) 81-88 85

LP equals zero, no CoE subformula exists. For ran-
dom instances this will usually be the case. On the
other hand, instances that stem from some practical
application often have a lot of structure that can be
utilized via this LP approach. If the LP has a pos-
itive optimal value, the CoE subformula consists of
the equivalency clauses associated with the sets I for
which ¢; =z — z;7 # 0, with §; = sgn(—¢,).

Note that a CoE subformula of maximal weight is
not guaranteed to be a subformula of maximal size.
In particular, if a CNF formula contains only clause—
disjoint CoE subformulas, the LP approach will iden-
tify the maximal size CoE subformula (i.e. the union
of the clause disjoint CoE subformulas). If however
some of the subformulas are not clause disjoint, then
the maximal weight CoE subformula does not neces-
sarily coincide with the maximal size subformula. In
this respect using an interior point method for solving
(LP) might be better than the simplex method, since
an IPM yields an optimal solution with a maximal
number of nonzero variables.

In practice, heuristics that look for particular struc-
tures may often succeed in identifying CoE subfor-
mulas. Indeed, for the parity formulas solved in this
paper such heuristics suffice. The heuristic we used
was simply to look for ‘blocks of clauses’ with a struc-
ture similar to that of Eq. (5) (see for the outline of a
local search approach [11]). However, if a subformula
is ‘well hidden’, or does not conform this standard
structure, using the LP approach described above will
succeed in identifying it, whereas the heuristic meth-
ods are likely to fail.

5. A DPLL algorithm for solving mixed CNF/CoE
formulas

One of the best known exact algorithms for solv-
ing CNF formulas is the variant of the Davis—Putnam
algorithm [5] introduced by Davis et al. [4], which is
known as the DPLL algorithm. The DPLL algorithm
implicitly enumerates all 2” distinct solutions by set-
ting up a binary search tree. We can easily extend
this algorithm to solve conjunctions of CNF and CoE
formulas. In Fig. 1 the extension of the algorithm is
summarized.

Let us look a bit more closely at the algorithm. First
we consider the unit resolution phase. When a unit

procedure DPLL (& = ®¢onp U Pcog, depth);
d:=unit _resolution(®);
if ® =0 then
D is satisfiable: return(satisfiable)
if C, =0 for a C, € ®cnr then
® is contradictory: backtrack.
if Qi = false for a Qi € Pcop then
P is contradictory: backtrack.
I:=branch.rule(d);
DPLL(® U {i}, depth+1);
DPLL(® U {~l}, depth+1);
return(unsatisfiable)

Fig. 1. The DPLL algorithm extended for CNF/CoE formulas.

literal is propagated through the formula, some clauses
become true, while others reduce in length by one. For
equivalency clauses it holds that each in which the
current unit literal occurs simply reduces in length by
one. As usual, unit resolution is applied until no unit
clauses remain, where it is noted that an equivalency
clause of length one can be regarded as a unit clause
in the usual sense. After the unit resolution phase it is
checked whether the current formula can be declared
either satisfiable or contradictory. If not, a branching
or splitting variable / is chosen in some pre-specified
way and the DPLL procedure is recursively called with
this variable set to true and false, respectively. Note
that if a set .# of independent variables is specified, it
appears to be sensible to restrict the set of candidate
branching variables to .#; then the dependent variables
are only considered in the unit resolution phase.

6. Solving the DIMACS parity instances

We apply the techniques that we discussed previ-
ously to solve the DIMACS parx-x-c.cnf instances.
These instances all contain a subformula with balanced
polynomial representation. This subformula is a CNF
translation of a CoE formula in which all equivalency
clauses have length three. It is not strictly necessary to
apply the LP approach to identify this formula, since
it can be easily found by inspection. For complete-
ness, we list the required time for constructing and
solving the LPs in Table 1. These tests were run on

86 J.P. Warners, H. van Maaren/ Operations Research Letters 23 (1998) 81-88

Table 1

Results of using the LP approach for identifying CoE subformulas

Instance n Row Col Time Opt
par8-1-c.cnf 254 282 818 0.16 224
par8-2-c.cnf 270 301 872 0.18 240
par8-3-c.cnf 298 338 974 0.19 268
par8-4-c.cnf 266 297 860 0.17 236
par8-5-c.cnf 298 335 968 0.19 268
pari6-1-c.cnf 1264 1537 4338 1.37 1080
par16-2-c.cnf 1392 1692 4776 1.60 1208
pari6-3-c.cnf 1332 1619 4570 1.75 1148
parl6-4-c.cnf 1292 1567 4426 1.51 1108
par16-5-c.cnf 1360 1653 4666 1.81 1176
par32-1-c.cnf 5254 6524 18302 16.84 4632
par32-2-c.cnf 5206 6466 18138 16.08 4584
par32-3-c.cnf 5294 6574 18442 17.20 4672
par32-4-c.cnf 5326 6618 18562 15.12 4704
par32-5-c.cnf 5350 6648 18646 16.18 4728

a HP9000/C200 workstation, 200 MHz. CPLEX was
used to solve the LPs, using the barrier algorithm.
Since the CoE subformulas are clause disjoint, the
maximal size CoE subformula is identified by the LP
approach. In Table 1 are listed, for each instance, the
number of clauses », the number of rows row and
columns col in the corresponding LP, the time for
constructing and solving the LP, and the value of the
optimal solution (opt). By construction it holds that
n + 2 x row = col; furthermore, due to the particular
structure of the instances (cf. Eq. (5)), the number of
equivalency clauses & induced by the optimal solution
is equal to opt/4.

The first and second phase of the algorithm were im-
plemented in C and compiled using gce with the flag
-02 set. The results reported in Tables 2 and 3 were
obtained running the code on a SGI Powtr CHALLENGE
with a 200 MHz R10k processor. All times reported
are in seconds. In Table 2 we report on the results
of the first phase of the algorithm which consists of
isolating (by inspection; this requires less than 0.01
s) and solving the CoE subformulas. The initial num-
bers of variables and clauses are given by m and ».
The number of equivalency clauses in the CoE sub-
formula is denoted by &; note that indeed k = opt/4,
while the size of the remaining CNF is n—opt clauses.
In the table we also indicate the number of indepen-
dent variables determining the solutions of the CoE
formula. The number of satisfying solutions for the
CoE subformula equals 2!1,

Note that the CoE formula does not need to be
solved separately for the modified DPLL algorithm to
be valid. However, if it is solved, and subsequently
it turns out that some dependent variable does not
occur in the CNF part of the formula, this variable
and the equivalency clause it occurs in need not
be considered in the DPLL search procedure. So, if we
have the choice between two variables p; and p; of
which only p; occurs in the CNF subformula as well,
we choose to remove p; from the set of independent
variables. This allows us to reduce the problem size
for phase two considerably. Moreover, on solving the
CoE formula an inconsistency might be detected. For
example, the dubois*.cnf and pretx.cnf instances,
which are also in the DIMACS suite, are already
found to be unsatisfiable in the first phase of our al-
gorithm. These instances are fully equivalent to CoE
formulas and thus solved in polynomial time [11].

Before starting the second phase of the algorithm
we first remove as many dependent variables and
equivalency clauses as possible. It may be noted that
on branching strategies considering only the CNF
subformula this has no effect as far as the node count
is concerned; computation times however will reduce.
The remaining numbers of variables, clauses and
equivalency clauses are given by m, n and k. Note
that m = k + |.#|; each dependent variable occurs in
exactly one equivalency clause. We tested several
branching strategies on the par16s instances, and
used the one that appeared to be the best to solve the

J.P. Warners, H. van Maaren | Operations Research Letters 23 (1998) 81-88 87

Table 2

Results of the first phase of the algorithm

Instance m n k Time |#]
par8-1i-c.cnf 64 254 56 0.01 8
par8-2-c.cnf 68 270 60 0.01 8
par8-3-c.cnf 75 298 67 0.01 8
par8-4-c.cnf 67 266 59 0.01 8
par8-5-c.cnf 75 298 67 0.01 8
pari6-1-c.cnf 317 1264 270 0.04 47
par1l6-2-c.cnf 349 1392 302 0.06 47
par16-3-c.cnf 334 1332 287 0.05 47
pari6-4-c.cnf 324 1292 2717 0.06 47
pari6-5-c.cnf 341 1360 294 0.06 47
par32-1-c.cnf 1315 5254 1158 4.49 157
par32-2-c.cnf 1303 5206 1146 3.80 157
par32-3-c.cnf 1325 5294 1168 4.50 157
par32-4-c.cnf 1333 5326 1176 4.39 157
par32-5-c.cnf 1339 5350 1182 4.62 157
Table 3

Results of the second phase of the algorithm

Instance m n k Nodes Time Nodes Time
par8-1-c.cnf 31 30 23 3 0.00 1 0.00
par8-2-c.cnf 31 30 23 3 0.00 1 0.00
par8-3-c.cnf 31 30 23 2 0.00 1 0.00
par8-4-c.cnf 31 30 23 3 0.00 3 0.00
par8-5-c.cnf 31 30 23 4 0.00 4 0.00
pari6-1-c.cnf 124 184 77 82 0.02 67 0.02
parl6-2-c.cnf 124 184 77 58 0.01 144 0.03
par16-3-c.cnf 124 184 77 55 0.01 137 0.03
par16-4-c.cnf 124 184 77 51 0.01 131 0.03
par16-5-c.cnf 124 184 77 49 0.01 85 0.02
par32-1-c.cnf 375 622 218 410634 193 130258 62
par32-2-c.cnf 375 622 218 201699 90 335988 160
par32-3-c.cnf 375 622 218 502747 248 6712 3
par32-4-c.cnf 375 622 218 218021 101 267032 135
par32-5-c.cnf 375 622 218 179325 84 328253 164

larger instances. In Table 3 we report on the results.
The branching strategy we arrived at is simply the
maximal occurrence in shortest clause rule, with a
lexicographic tie break, where the candidate branching
variables are restricted to the set of independent vari-
ables. Note that for determining a branching variable
the equivalency clauses are not considered. We report
on the node counts obtained by first branching to /
and 1, respectively. The node count gives the num-
ber of times that a branching variable was chosen. A
typical phenomenon of DPLL algorithms that we also
encountered here is that using different branching

strategies the computation times and node counts may
vary heavily.

Examining the tables we conclude that the smaller
instances are solved in fractions of seconds, while the
largest take at most about four minutes. To the best
of our knowledge, none of the current state-of-the-art
implementations of the DPLL procedure are capable
of solving the par32x instances in less than 24 h, and
often they require several days of computation time.
Recently, it came to our attention that the instances
were solved by an unspecified algorithm (‘GT6’) in
2-4h [1].

88 J.P. Warners, H. van Maaren|Operations Research Letters 23 (1998) 81-88

The application of the techniques and notions de-
scribed in this paper to more general SAT problems
is the subject of further research.

Acknowledgements

We thank the anonymous referee whose suggestions
contributed to the clarity and completeness of this pa-
per.

References

[1]1 GT6 algorithm solves the extended DIMACS 32-bit parity
problem. Note available from http://www.research.
att.com/ kautz/challenge/, 1998.

[2] S.A. Cook, The complexity of theorem proving procedures,
in: Proc. 3rd Ann. ACM Symp. on the Theory of Computing,
1971, pp. 151-158.

[3] IM. Crawford, M.J. Kearns, R.E. Schapire, The minimal
disagreement parity problem as a hard satisfiability problem,
Draft version, 1995.

[4] M. Davis, M. Logemann, D. Loveland, A machine program
for theorem proving, Commun. ACM 5 (1962) 394-397.

[S] M. Davis, H. Putnam, A computing procedure for
quantification theory, J. ACM 7 (1960) 210-215.

[6] J. Gu, Global optimization for satisfiability (SAT) problem,
IEEE Trans. Knowl. Data Eng. 6 (3) (1994) 361-381.

[7] N. Karmarkar, A new polynomial-time algorithm for linear
programming, Combinatorica 4 (1984) 373-395.

[8] T.J. Schaefer, The complexity of satisfiability problems, Proc.
10th Symp. on the Theory of Computing, 1978, pp. 216-226.

[9] B. Selman, H. Kautz, D. McAllester, Ten challenges in
propositional reasoning and search, Proc.15th Int. Joint Conf.
on Artificial Intelligence, [JCAI-97, Nagoya, Aichi, Japan,
1997.

[10] M.A. Trick, Second DIMACS challenge test problems, in;
D.S. Johnson, M.A. Trick (Eds.), Cliques, Coloring and
Satisflability: Second DIMACS implementation challenge,
vol. 26 of DIMACS series in Discrete Mathematics and
Computer Science, American Mathematical Society, 1996,
Providence, RI, pp. 653-657.

[11] JP. Warners, H. Van Maaren, Recognition of tractable
satisflability ~ problems through balanced polynomial
representations, Discrete Appl. Math., accepted for
publication.

